skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cobos, Marlon E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Surveillance and monitoring of zoonotic pathogens is key to identifying and mitigating emerging public health threats. Surveillance is often designed to be taxonomically targeted or systematically dispersed across geography, however, those approaches may not represent the breadth of environments inhabited by a host, vector, or pathogen, leaving significant gaps in our understanding of pathogen dynamics in their natural reservoirs and environments. As a case study on the design of pathogen surveillance programs, we assess how well 20 years of small mammal surveys in Panamá have sampled available environments and propose a multistep approach to selecting survey localities in the future. We use >8,000 georeferenced mammal specimen records, collected as part of a long-term hantavirus surveillance program, to test the completeness of country-wide environmental sampling. Despite 20 years of surveillance, our analyses identified a few key environmental sampling gaps. To refine surveillance strategies, we selected a series of core historically sampled localities, supplemented with additional environmentally distinct sites to more completely represent Panama’s environments. Based on lessons learned through decades of surveillance, we propose a series of recommendations to improve strategic sampling for zoonotic pathogen surveillance. 
    more » « less
  2. Environmental dimensions, such as temperature, precipitation, humidity, and vegetation type, influence the activity, survival, and geographic distribution of tick species. Ticks are vectors of various pathogens that cause disease in humans, andIxodes scapularisandAmblyomma americanumare among the tick species that transmit pathogens to humans across the central and eastern United States. Although their potential geographic distributions have been assessed broadlyviaecological niche modeling, no comprehensive study has compared ecological niche signals between ticks and tick-borne pathogens. We took advantage of National Ecological Observatory Network (NEON) data for these two tick species and associated bacteria pathogens across North America. We used two novel statistical tests that consider sampling and absence data explicitly to perform these explorations: a univariate analysis based on randomization and resampling, and a permutational multivariate analysis of variance. Based on univariate analyses, inAmblyomma americanum, three pathogens(Borrelia lonestari,Ehrlichia chaffeensis, andE. ewingii) were tested; pathogens showed nonrandom distribution in at least one environmental dimension. Based on the PERMANOVA test, the null hypothesis that the environmental position and variation of pathogen-positive samples are equivalent to those ofA. americanumcould not be rejected for any of the pathogens, except for the pathogenE. ewingiiin maximum and minimum vapor pressure and minimum temperature. ForIxodes scapularis,six pathogens (A. phagocytophilum,Babesia microti,Borrelia burgdorferisensu lato,B. mayonii,B. miyamotoi, andEhrlichia muris-like) were tested; onlyB. miyamotoiwas not distinct from null expectations in all environmental dimensions, based on univariate tests. In the PERMANOVA analyses, the pathogens departed from null expectations forB. microtiandB. burgdorferisensu lato, with smaller niches inB. microti, and larger niches inB. burgdorferisensu lato, than the vector. More generally, this study shows the value of large-scale data resources with consistent sampling methods, and known absences of key pathogens in particular samples, for answering public health questions, such as the relationship of presence and absence of pathogens in their hosts respect to environmental conditions. 
    more » « less
  3. Silverman, Neal (Ed.)
  4. Becker, Daniel (Ed.)
    The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020–2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species wasA.americanum(24098, 97%) followed byDermacentor variabilis(370, 2%),D.albipictus(271, 1%),Ixodes scapularis(91, <1%)and A.maculatum(38, <1%).Amblyomma americanum,A.maculatum and D.variabiliswere active in Spring and Summer, whileD.albipictus and I.scapulariswere active in Fall and Winter. Factors associated with numbers of individuals ofA.americanumincluded day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity. 
    more » « less
  5. Ecological niches are increasingly appreciated as a long-term stable constraint on the geographic and temporal distributions of species, including species involved in disease transmission cycles (pathogens, vectors, hosts). Although considerable research effort has used correlative methodologies for characterizing niches, sampling effort (and the biases that this effort may or may not carry with it) considerations have generally not been incorporated explicitly into ecological niche modeling. In some cases, however, the sampling effort can be characterized explicitly, such as when hosts are tested for pathogens, as well as comparable situations such as when traps are deployed to capture particular species, etc. Here, we present simple methods for testing the hypothesis that non-randomness in occurrence or detection exists with respect to environmental dimensions (= a detectable signal of ecological niche); i.e., whether a pathogen occurs nonrandomly with respect to environment, given the occurrence and sampling of its host. We have implemented a set of R functions that presents an overall test for nonrandom occurrence with respect to a set of environmental dimensions, and, a posteriori, a set of exploratory tests that identify in which dimension(s) and in which direction or form the nonrandom occurrence is manifested. Our tools correctly detected signals of niche in most of our example cases. Although such signal may not be detectable in cases in which the niche of interest is broader than the universe sampled, such a possibility was correctly discarded in our analyses, preventing further interpretations. This kind of testing can constitute an initial step in a process that would conclude with development of a more typical ecological niche model. The particular advantage of the analyses proposed is that they consider the biases involved in sampling, testing, and reporting, in the context of nonrandom occurrence with respect to environment before proceeding to inferential and predictive steps. 
    more » « less
  6. El conjunto de ideas, métodos y programas informáticos que se conoce como “Modelado de Nicho Ecológico” (MNE)—y el relacionado “Modelado de Distribución de Especies” (MDS)—han sido objeto de intensa exploración e investigación en las últimas décadas. A pesar de existir al menos cuatro síntesis publicadas, este campo ha crecido tanto en complejidad, que la formación de nuevos investigadores es difícil. Hasta ahora, dicha formación se ha hecho de manera presencial en cursos organizados por universidades o centros de investigación, de los que hemos formado parte como instructores. Sin embargo, el acceso a este tipo de cursos especializados es restringido, por un lado, porque los cursos no se ofrecen en todas las universidades, y por otro, porque normalmente se imparten en inglés. Para facilitar el acceso a una mayor comunidad de científicos de habla hispana, presentamos un curso en español, completamente digital y de acceso gratuito, que se realizó vía Internet durante 23 semanas consecutivas en 2018. Aunque las barreras intrínsecas al uso de Internet pueden dificultar la accesibilidad a los materiales del curso, hemos usado diversos formatos para la divulgación de los contenidos académicos (video, audio, pdf) con el objetivo de eliminar la mayor parte de estos problemas. 
    more » « less